

Project 1 Report
Cache Simulator

Lakshmi Katravulapalli

EEL 4768-0003: Computer Architecture

Date: 3/24/2024

Part A:

In Part A, we are asked to analyze the trend of the miss ratio when we change the cache

size. We are asked to use a Cache Associativity of 4, write-back policy, and the LRU replacement

policy. We will vary the cache sizes from 8KB to 128KB in multiples of 2. Based on the data

collected below, we noticed for the XSBench.t file that the Miss Ratio decreases as the Cache

Size increases. For the MINIFE.t file, we noticed the same trend as the XSBench.t file. The Miss

Ratio will decrease when the Cache Size increases because we have lower chances of conflict

and therefore less chances of a Miss. A bigger cache size allows for more data storage. We notice

that the XSBench.t file has a higher Miss Ratio because it needs more operations to the cache

compared to the MINIFE.t File.

XSBENCH.t Table

Cache Size (KB) Miss Ratio

8192 0.136261

16384 0.119363

32768 0.112538

65536 0.108198

131072 0.104894

XSBENCH.t Graph

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 20000 40000 60000 80000 100000 120000 140000

M
is

s
R

at
io

Cache Size (KB)

Miss Ratio vs Cache Size

MINIFE.t Table

Cache Size (KB) Miss Ratio

8192 0.080703

16384 0.074231

32768 0.065595

65536 0.059669

131072 0.055828

MINIFE.t graph

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 20000 40000 60000 80000 100000 120000 140000

M
is

s
R

at
io

Cache Size (KB)

Miss Ratio vs Cache Size

Part B:

In Part B, we are asked to repeat Part A, but compare the policies of Write-Back and

Write-Through while changing the Cache Sizes. We will compare the number of Read and Write

operations for each policy. We will vary the Cache Size from 8K to 128KB by multiples of 2.

Based on the data presented below, we notice that for the Write-Through Policy the

number of read operations decreases as the Cache Size increases. On the other hand, the number

of Write Operations stays the same for every Cache Size. For the Write-Back policy, we notice

the Read and Write operations decrease as the Cache Size increases. This is the case for both the

XSBench.t File and the MINIFE.t file. For the XSBench.t file we notice that it has a steeper

change in the Number of Write-operations for Write-Back compared to the MINIFE.t file. The

XSBench.t also has more Read operations because it is a bigger file thus needing more

operations. Overall, the miss ratio stays the same and both policies have similar trends except for

the write operations in Write-through which stay constant.

XSBench.t table (Write-Through Policy)

Cache Size (KB) Reads Writes
8192 2885331 5013495

16384 2527505 5013495
32768 2383001 5013495
65536 2291098 5013495

131072 2221125 5013495

XSBench.t graph (Write-Through Policy)

XSBench.t table (Write-Back Policy)

Cache Size (KB) Reads Writes

8192 2885331 55680

16384 2527505 7318

32768 2383001 600

65536 2291098 69

131072 2221125 36

0

1000000

2000000

3000000

4000000

5000000

6000000

0 20000 40000 60000 80000 100000 120000 140000

C
o

u
n

t

Cache Size (KB)

Cache Size vs. Number of Reads/Writes
Write-through Policy

Reads Writes

XSBench.t Graph (Write-Back Policy)

 MINIFE.t table (Write-Through Policy)

Cache Size (KB) Reads Writes

8192 393352 636483

16384 361807 636483

32768 319713 636483

65536 290830 636483

131072 272113 636483

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

0 20000 40000 60000 80000 100000 120000 140000

C
o

u
n

t

Cache Size (KB)

Cache Size vs. Number of Reads/Writes
Write-Back Policy

Reads Writes

MINIFE.t graph (Write-Through Policy)

MINIFE.t table (Write-Back Policy)

Cache Size (KB) Reads Writes

8192 393352 84760
16384 361807 77552
32768 319713 71942
65536 290830 66927

131072 272113 61142

0

100000

200000

300000

400000

500000

600000

700000

0 20000 40000 60000 80000 100000 120000 140000

C
o

u
n

t

Cache Size (KB)

Cache Size vs. Number of Reads/Writes
Write-Through Policy

Reads Writes

MINIFE.t graph (Write-Back Policy)

Part C:

 In Part C, we are asked to change the associativity, and keep the replacement policy as

LRU, and cache size as 32KB. We will change the associativity from 1 to 64 in multiples of 2

and compare the behavior of the Miss Rate. Based on the data below for the XSBench.t file, we

notice that when we increase the associativity the Miss Ratio decreases. Although, we notice that

as we increase the size of the associativity the Miss Ratio decreases at a slower rate. On the other

hand, when we look at the MINIFE.t file we notice that the Miss Ratio decreases when the

associativity increases from 1 to 8, but we see that it starts increasing when the associativity

changes from 8 to 64. A higher-level associative cache can reduce the Miss Rate because each set

can have more blocks which reduces the chances for a conflict, but this might not always be the

case.

XSBENCH.t table:

Associativity Miss Ratio
1 0.122697
2 0.114457
4 0.112539
8 0.112007

16 0.111905
32 0.111784

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 20000 40000 60000 80000 100000 120000 140000

C
o

u
n

t

Cache Size

Cache Size vs. Number of Reads/Writes
Write-Back Policy

Reads Writes

64 0.111753

XEBENCH.t graph:

MINIFE.t table:

Associativity Miss Ratio
1 0.075405
2 0.066151
4 0.065594
8 0.065291

16 0.065429
32 0.065583
64 0.065665

0.11

0.112

0.114

0.116

0.118

0.12

0.122

0.124

0 10 20 30 40 50 60 70

M
is

s
R

at
io

Associativity

Associativity vs Miss Ratio
Cache Size: 32 KB

MINIFE.t graph:

Part D:

In Part D, we are asked to repeat Part C but using the FIFO replacement policy. We are asked to

analyze the results for Part C and Part D and understand how the replacement policy changes

with associativity. Based on the data, we can conclude that the LIFO and FIFO policies have

similar outcomes for Miss Ratio. For the XSBench.t file we see that after the associativity

changes from 1 to 2, the miss ratio increases as the associativity increases. For the MINIFE.t file,

we see a similar trend to the LRU policy where the Miss Ratio decreases from associativity 1-8

but increases from 8-64. Another observation based on the graphs, is how the LRU policy has a

steadier rate change than FIFO. This is because LRU is said to have better accuracy and

performance than FIFO. Overall, the only difference we noticed was for the XSBench.t file

where the Miss Ratio decreases at a constant rate for the LRU policy, but increases in Miss Ratio

for the FIFO policy.

0.064

0.066

0.068

0.07

0.072

0.074

0.076

0 10 20 30 40 50 60 70

M
is

s
R

at
io

Associativity

Associativity vs Miss Ratio
Cache Size: 32KB

XSBench.t Table

Associativity Miss Ratio
1 0.122696
2 0.120609
4 0.120671
8 0.120891

16 0.12122
32 0.121124
64 0.121212

XSBench.t Graph

0.1205

0.121

0.1215

0.122

0.1225

0.123

0 10 20 30 40 50 60 70

M
is

s
R

at
io

Associativity

Associativity vs Miss Ratio
FIFO Policy

MINIFE.t Table

Associativity Miss Ratio
1 0.075405
2 0.068023
4 0.067742
8 0.067609

16 0.06807
32 0.068226
64 0.068274

MINIFE.t graph

0.067

0.068

0.069

0.07

0.071

0.072

0.073

0.074

0.075

0.076

0 10 20 30 40 50 60 70

M
is

s
R

at
io

Associativity

Associatvity vs Miss Ratio
FIFO Policy

Notes:

For the Bonus Opportunity, I implemented the LIFO policy.

The compilation command used is python3

 Example: python3 sim.py 32768 4 1 1 XSBench.t

